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Abstract
Choroid thicknessmeasured fromoptical coherence tomography (OCT) images has emerged as a vital
metric in themanagement of retinal diseases such as highmyopia. In this paper, we propose a novel
group-wise context selection network (referred to asGCS-Net) to segment the choroid of either
normal or highmyopia eyes. To deal with the diverse choroid thickness and the variable shape of the
pathological retina, GCS-Net adopts the group-wise channel dilation (GCD)module and the group-
wise spatial dilationmodule, which can automatically select group-wisemulti-scale information
under the guidance of channel attention or spatial attention, and enhance the consistency between the
receptive field and the target area. Furthermore, a boundary optimization networkwith a new edge
loss is incorporated to improve the resulting choroid boundary by deep supervision. Experimental
results evaluated on a dataset composed of 1650 clinically obtainedOCTB-scans show that the
proposedGCS-Net can achieve aDice similarity coefficient of 95.97± 0.54%,which outperforms
some state-of-the-art segmentation networks.

1. Introduction

The choroid layer, sandwiching between the retinal pigment epithelium (RPE) and the sclera, has complex
vasculature and performs critical physiological functions (Bill et al 1983,Norren andTiemeijer 1986,
Parver 1991, Alm andNilsson 2009,Nickla andWallman 2010). Changes of the choroid thickness and volume
are themanifestation of various eye diseases, such as pathologicalmyopia (PM), age-relatedmacular
degeneration (AMD), central serous choroiretinopathy (CSC), Vogt-Koyanagi-Harada syndrome, and
choroiditis (Imamura et al 2009,Manjunath et al 2011, Esmaeelpour et al 2011, Sim et al 2013, Dhoot et al 2013).
In recent decades, the emergence and development of optical coherence tomography (OCT) imaging has largely
facilitated the diagnosis of retinal/choroidal diseases (Huang et al 1991, Fujimoto and Swanson 2016).With the
advance ofOCT techniques, the deeper structures of the eye become visible, and thewhole choroid region can be
visualized (Yasuno et al 2007). Accurate quantification of the choroid thickness fromOCT scans is of great
significance for the pathophysiology studies of diseases associatedwith choroid, and can help the prediction,
diagnosis, andmanagement of these diseases. In this paper, we propose an automaticmethod to segment the
choroid region for either normal or highmyopia retina, fromwide-viewOCT scans including bothmacula and
optic nerve head (ONH) area, as shown infigure 1.

Many existing algorithms (Li et al 2012, Alonso-Caneiro et al 2013,Danesh et al 2014, Chen et al 2015, 2016,
Shi et al 2016) divide choroid segmentation into two tasks, first detecting the Bruchsmembrane (BM) as its
upper boundary and then detecting the choroidal-scleral interface (CSI) as the lower boundary. The BMwith
high contrast can be segmented using gradient-basedmethods, while theCSI ismore subtle and thereforemore
regional or textural constraints need to be added. These traditional algorithms have certain limitations. Some are
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only applicable to high-SNRB-scans obtained by compounding, and some are only applicable to normal retinas,
or tomacular centeredOCT scans. For highmyopia (HM) retina, low signal intensity, folding of the retina
caused by the long axial length, and abnormal regions such as retinoschisis and choroidal neovascularization
make detection of the retinal and choroidal structuremore complicated and difficult.Moreover, forOCT scans
containing the optical nerve head (ONH), gradient-basedmethodswill give inaccurate results if no proper pre-
processing is applied (Yu et al 2018). In this paper, we seek to use the deep learningmethod to directly segment
the choroid region, avoiding any pre-processing steps.

Convolutional neural networks (CNNs) have beenwidely applied formedical image segmentation, with
some applications on retinalOCT segmentation. In Fang et al (2017), a frameworkwas proposed combining
CNNand graph searchmethod for automatic segmentation of nine retinal layer boundaries fromOCT images.
TheU-Net (Ronneberger et al 2015) added skip-connection on the basis of fully convolutional network to
integrate saliency prediction atmultiple resolutions, and achieves high performance inmedical image
segmentation. ReLayNet (Roy et al 2017) used such encoder-decoder configuration and incorporate unpooling
stageswith skip connections for improved spatial consistency, and used a composite loss function to achieve
end-to-end segmentation of retinal layers and fluidmasses in eyeOCT scans. CE-net (Gu et al 2019) improved
U-Net using dense atrous convolution (DAC) block and residualmulti-kernel pooling (RMP) block to capture
more high-level features and preservemore spatial information, and achieved good results on several tasks
including retinal layer segmentation. For choroid segmentation, in Sui et al (2017), amulti-scale CNNwas
proposed to learn the graph-edgeweights needed for graph searchmethods. InMasood et al (2019), BMwas
segmented using a series ofmorphological operations, whereas the choroid layer was segmented usingCNN. In
Kugelman et al (2019), several patch-based or semantic segmentationCNNmethodswere tested and compared,
and it was concluded that the semantic segmentationCNNs performed significantly better in detecting theCSI.
In Tsuji et al (2020), the SegNet (Badrinarayanan andCipolla 2017)was applied for choroid segmentation.

Despite thatU-shaped networks have achieved high performance on different benchmarks, a significant
disadvantage of such networks is that it perform a unified processing of all channels of featuremapswithin the
same layer, whichwill result in the same receptive field and single-scale information in one layer.With the
consecutive pooling and strided convolutional operations, this drawback becomesmore prominent. Since each
layer of the network only acquires single-scale local information, spatial information is gradually weakened as
the featuremap is downsampled layer by layer in the encoder side, and the global context information
finally obtained by the encoder is gradually weakened as the featuremap is upsampled layer by layer in the
decoder side.

Aiming at such shortcomings,many networkswere proposed to optimize feature extraction. For example,
SegNet (Badrinarayanan andCipolla 2017) utilized the saved pool indices to recover the reduced spatial
information. The global convolutional network (Chao et al 2017) adopted large kernel size to expand the
receptive field. Pyramid poolingmodulewas proposed in PSPNet (Parver 1991) to fusemulti-scale features to
tackle objects of different size. Recently, the attentionmodule becomes an increasingly powerful tool for deep
learning, which allows feature recalibration (Wang et al 2018, Fu et al 2019,Hu et al 2020). However, these
networks achieve better performance at the expense of computational time andmemory cost. The dilated/
atrous convolution (Yu andKoltun 2016, Chen et al 2017, 2018) is another way to expand the receptive field
without increasing the amount of parameters.

In this paper,motivated by the idea of the group convolution (Krizhevsky et al 2012, Chollet 2017, Gao et al
2021), we design a lightweight group-wise context selection network (GCS-Net) for choroid segmentation in
OCT images. The core idea ofGCS-Net is to group a number of featuremaps, and to automatically select group-
wisemulti-scale information under the guidance of channel attention or spatial attention. This will enhance the
consistency between the receptive field and the target area, thereby enhancing the learning of useful information.

Figure 1.B-scans fromwide-view volumetric OCT scans. (a)AB-scan of a normal eye. (b)The sameB-scan in (a)with several
structuremanually labeled. (c)AB-scan from an eyewith highmyopia. (d)The sameB-scan in (c)with several structuremanually
labeled.
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The contributions of the paper are listed as follows:

• Wepropose a novel framework namedGCS-Net, which can autonomously select group-wise context
information that corresponds to different sizes of receptive field, so that targets with different scales can be
segmented accurately. At the same time,GCS-Net is extremely lightweight withmuch less parameters than
the state-of-the-art deep networks for segmentation.

• Wedesign a group-wise channel dilation (GCD)module to be inserted in the skip-connection of theGCS-
Net. The purpose of thismodule is to autonomously select the group-wisemulti-scale information under the
guidance of channel information.

• Wedesign a group-wise spatial dilation (GSD)module to be placed in the decoding path of theGCS-Net. The
purpose of thismodule is to autonomously select the group-wisemulti-scale information under the guidance
of spatial information.

• Wedesign a new edge loss as part of the joint loss, which deals with the difficulty caused by blurred choroid
boundary by themeans of deep supervision.

The rest of the paper is organized as follows: section 2 details the structure ofGCS-Net and the joint loss used
by the network. In section 3, the dataset, implementation details and evaluationmetrics are described and
explained. Subsequently, results of ablation experiments and comparison experiments are given and discussed
in section 4. Section 5 concludes the entire work and gives some discussions.

2.Methods

In this section, the self-attentionmechanism isfirst introducedwhichmotivates the two proposedmodules for
automatic selection of group-wisemulti-scale information. Then theGCDmodule andGSDmodule are
introduced in detail. Subsequently, the overall network structure is givenwith explanations on how the two
modules work for our segmentation task. Finally, the joint loss is described.

2.1. Self-attentionmechanism
Recently, self-attention modules are proposed to enhance the discriminating ability of feature representations
by allowing feature recalibration with adaptive weights calculated from the feature maps. These modules can
be categorized into channel attention and spatial attention modules. Used separately (Zhao et al 2017, Hu
et al 2020) or combined (Woo et al 2018, Cao et al 2019), they achieved good results in computer vision
tasks. The channel attention module spatially compresses a set of feature maps by global average pooling to
obtain channel-wise importance, and thereby assigning different weights to each channel. The spatial
attention module performs a series of compression operations on a group of feature maps along the channel
axis to obtain a spatial feature description map, which is used to guide the optimization of the feature map.
In this paper, we integrate multi-scale dilated convolution into these two types of modules, to further allow
feature recalibration over different scales.

2.2. Group-wise channel dilationmodule
Figure 2 shows the proposed group-wise channel dilationmodule. The input featuremaps go through global
average pooling, convolution, activation to returnm groups of featuremaps.Then group-wise softmax
regression is performed to returnm groups of channel weights.Meanwhile, the input featuremaps are evenly

Figure 2.Components of the group-wise channel dilation (GCD)module.
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divided intom groups and dilated convolutionwith dilation ratios of d d, ,c
m
c

1  are applied to each group,
respectively. Consequently,m groups of featuremapswith different receptive field are obtained. Then them
groups of featuremaps aremultipliedwith the corresponding channel weights to emphasize automatic selection
of features of different scales. Finally, concatenation and residual operations are used to tackle performance
degradation associatedwith deepening of the network. Therefore, themodule automatically selectsmulti-scale
information obtained froma group of featuremaps under the guidance of the channel information.

2.3. Group-wise spatial dilationmodule
Figure 3 shows the proposed group-wise spatial attentionmodule. The input featuremaps go through a series of
operations to obtain n featuremapswith spatial weights. Among these operations, the downsampling serves to
getmore global information, and the upsampling restores the size of the featuremap.Meanwhile, the input
featuremaps are divided into n groups. Note that in thismodule it is not necessary to have exactly the same
number of channels in each group.Dilated convolutionwith dilation ratios of d d, ,s

n
s

1  are applied to each
group, respectively. Consequently, n groups of featuremapswith different scales are obtained. Then these
featuremaps aremultipliedwith the corresponding spatial weights. Finally, concatenation and residual
operations are used to obtain the output featuremaps. Therefore, themodule automatically selectsmulti-scale
information obtained froma group of featuremaps under the guidance of spatial information.

2.4. Loss function
Onemajor difficulty of choroid segmentation is that the lower boundary (CSI), defined between the choroid
vasculature and the sclera, is often blurred.Meanwhile, the high level of noise and low contrast of pathological
OCT scans can cause deflected results for both upper and lower boundaries. Therefore, a new edge loss LEDice,
which is theDice loss calculated by edge probabilities, is used tomake the networkmore sensitive to choroid
boundary information, defined as in (1)

L
p Sobel g

p Sobel g
1

2
, 1EDice

i
N

i i

i
N

i i
N

i

= -
å ¢ +

å ¢ + å +




( )
( )

( )

whereN is the total size of the predictionmap, p 0, 1i ¢ Î [ ]denotes the predicted probability for choroid
boundaries, gi ä {0, 1} denote the ground truth label for choroid region, and the Sobel edge detection operator is
used to extract the edge ground truth, and ò is a small smoothing factor.

In this paper, the proposed edge loss aswell as the binary cross-entropy (BCE) andDice loss commonly used
in the segmentation tasks, comprise the total loss to jointly optimize the network. Among them, BCE can solve
the problemof data imbalance inmedical images, while Dice loss ismore focused on small target segmentation
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where piä [0, 1] denotes the predicted probability for the choroid region, and giä {0, 1} denote the ground
truth label for choroid region.

2.5. Network architecture
WithGCDandGSD,we propose our group-wise context selection network for choroid segmentation as
illustrated infigure 4. SinceGCD andGSD are powerful in acquiringmulti-scale contexts, we use a lightweight
U-Netwith only four layers of encoder-decoder architecture as our baseline. Two 3× 3 convolutions andmax

Figure 3.Components of the group-wise spatial dilation (GSD)module.
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pooling are used in each layer of the encoding path to quickly acquire featuremaps of different resolutions.
Multiple simple decoder blocks are used in decoder path to restore the high resolution featuremaps efficiently.
Except for the last two convolutional layers forfinal prediction output, convolutional layers in the network are
followed by batch normlization (BN) and rectified linear unit (ReLU), which are not shown infigure 4 for
compact illustration. TheGCDmodules are applied in the skip-connection. The purpose is to obtain useful
multi-scale information and transfer it to the decoder side. TheGSDmodules are applied in the decoder side,
inserted between the deconvolution layers. The purpose is both to acquiremulti-scale information and to
compensate for the loss of global information caused by upsampling in the decoding process.

The boundary optimization network (BON) is a subnet which emphasizes boundary information in the final
predictionmap, and achieves deep supervision by the proposed edge loss. In BON, four edge predictionmaps
are generated, for which the edge loss is calculated respectively. Note that after the last threeGSDmodules,
deconvolutions are added to unify the size of the featuremap. The obtained semantic boundary information of
different scales is added andmerged into the last convolution of the network, so that the edges in the predicted
map can be refined.

Then thefinal joint loss function is defined as:

L L L L , 4Total BCE Dice
i

EDice
i

1

4

åa b= + +
=

( )

whereα andβ are predefinedweights.

3. Experimental settings

3.1.Dataset
The dataset used in this paper contained B-scans from volumetricOCT scans acquired by a TopconAtlantis
DRI-1 swept sourceOCT scanner (TopconCorp., Tokyo, Japan) at the First People’sHospital Affiliated to
Shanghai Jiao TongUniversity, China. The scan range included themacular center and theONH region.
The volumetric image size was 512× 992× 256 (width× height× B-scans), which corresponded to a
12× 2.6× 9mm3 volume. The collection and analysis of image data were approved by the Institutional Review
Board of the First People’sHospital Affiliated to Shanghai Jiao TongUniversity and adhered to the tenets of the
Declaration ofHelsinki. An informed consent was obtained from each subject. The dataset included a total of
1650OCTB-scans with ground truth. Among them, 1150 B-scans came from115 normal eyes, 500 B-scans
came from50 eyes with highmyopia, where ten evenly spaced B-scans were extracted from eachOCTvolume.

Figure 4.Anoverview of the group-wise context selection network (GCS-Net)
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The upper and lower boundaries of choroidwere delineated by a clinical professional using the software
ITK-SNAP (version 3.4.0) (Yushkevich et al 2006). Adjacent B-scansmight be used for reference to assist
delineation of subtle boundaries. The B-scans were evenly divided into five folds, and it wasmade sure all
B-scans fromone subject only occur in one of thefive folds, so that training and testing data were from
different subjects. Five-fold cross validationwas performed to get all the reported results.

3.2. Implementation details
The experiments were performed on the public platformPyTorchwithNVIDIATesla K40GPUwith 12 GB
memory. In the training process, the batch size was 8, and the iteration numberwas 60. The stochastic gradient
descent algorithmwith an initial learning rate of 0.01, themomentumof 0.9 andweight decay rate of 0.0001was
used to optimize the network.

In the training process, we used random left-right flips for data augmentation, considering the symmetry of
left and right eyes. To improve computational efficiency, we resized the input image size from992× 512 to
512× 256, which almost kept the aspect ratio of the original B-scan.

3.3. Evaluationmetrics
To quantitatively evaluate the performance of the proposedmodel, four segmentation evaluationmetrics: inter-
section-over-union (IoU), Dice similarity coefficient (DSC), sensitivity (Sen) and specificity (Spe), are used in
ablation study. In comparisonwith othermethods, we add three additional indicators for the evaluation of
choroid segmentation: themean absolute boundary difference (ABD) of BMandCSI, and themean thickness
difference (TD) of the choroid (Shi et al 2016).

3.4. Parameter selection
Weempirically selected the number of groups and the dilation ratios in theGCD andGSDmodules. Various
combinations of group numbersm= 1, 2, 4 and n= 1∼ 4were tested. (Note thatm= 3 is not applicable to
ensure the same group size in theGCDmodule.) For dilation ratios, d 1c

1 = and d 1s
1 = were fixed, representing

non-dilated convolution for thefirst group, and various combinations of dilation ratios of 2, 4, 6 were tested for
the other groups. The combination ofm= 2with d d1, 2c c

1 2= = , and n= 3with d d d1, 2, 4s s s
1 2 3= = =

resulted in the highest IoU index, andwere used to obtain all reported results in the next section.
We also empirically selected theweights in the loss function asα= 1 andβ= 1. Largerβmakes itmore

difficult for themodel to converge, because small perturbation in the edge location can result in large variation of
the edge loss.

4. Results

4.1. Ablation study
In this subsection, we present several plausible variations of the proposedGCS-Net, in order to highlight the
importance of each of the proposed contributions.

4.1.1. Ablation study formodel complexity
In order to verify that the performance improvement of the proposedmodel is not caused by the increase in
network parameters, we deepened the baseline andGCS-Net (w/oBON) from four layers tofive layers. The
results and amounts ofmodel parameters are listed in table 1. It can be seen that the proposedmodel has less
parameters but better performance than the 5-layer baseline. Interestingly, forGCS-Net (w/oBON), theres no
improvement of performancewhen the number of layers increases. There are probably two reasons for this.
First, as the network is applied for segmentation of a single type of region, the number of parameters with four
layers are already enough to capture the features of choroid regions. Toomany parametersmay cause some
useful information to be overwhelmed during the encoding process, whichwill cause the network to fail to

Table 1.Results of ablation experiments formodel complexity.

Methods IoU(%) DSC(%) Sen(%) Spe(%) #params

Baseline_4layer 90.38 ± 0.80 94.67 ± 0.59 95.36 ± 0.95 94.31 ± 1.27 4.88M

Baseline_5layer 90.56 ± 0.38 94.78 ± 0.22 96.23 ± 1.32 93.68 ± 1.23 9.87M

GCS-Net_4layer(w/oBON) 91.68 ± 1.01 95.42 ± 0.68 96.29 ± 0.67 94.95 ± 0.47 7.50M

GCS-Net_5layer(w/oBON) 91.58 ± 0.88 95.35 ± 0.57 96.18 ± 0.67 94.97 ± 0.67 17.65M
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recovermore semantic information during the decoding process.Moreover, increasing the depth of the network
is nothingmore than increasing the ability of acquiringmulti-scale features.However, withmultiple dilated
convolutions, the proposedGCS-Net (w/oBON) is already powerful inmulti-scale representations,making
deeper structure unnecessary. Therefore, we adopt the four-layer GCS-Net (w/oBON), which is lightweight.

4.1.2. Ablation study for GCDmodule
Wefirst studied amodel variationwith only theGCDmodules integrated in the baseline, called Baseline+GCD.
We also designed another twomodel variations for comparison, called Baseline+GCD (non-dilated) and
Baseline+GCD (no-channel). In Baseline+GCD (non-dilated), all dilation ratios of the dilated convolution
were set as 1, so that themodule did not extractmulti-scale information. In Baseline+GCD (no-channel), the
channel attentionmechanismwas removed. As shown in table 2, all these variations have higher indices over the
baseline, andGCDwith both dilated convolution and channel attention achieves highest IoU,DSC and Spe.
This shows both of these two components contribute to the final performance.

4.1.3. Ablation study for GSDmodule
Similarly, we designed threemodel variations called Baseline+GSD, Baseline+GSD (non-dilated) andBaseline
+GSD (non-spatial). As shown in table 2, all these variations have higher IoU,DSC, Sen and Spe over the
baseline, andGSDwith both dilated convolution and channel attention achieves highest IoU,DSC, and Sen.
This showsmulti-scale dilated convolution and spatial attention contribute to the final performance.

4.1.4. Ablation study for the whole network
Firstly we compare Baseline+GCD, Baseline+GSD, andGCS-Net (w/oBON)with bothmodules integrated. As
shown in table 2, comparedwith the baseline, theGCDmodule improves the IoUby 1.05% and theGSD
module improves the IoUby 1.02%.Adding bothGCDandGSD to the baseline improves the IoUby 1.30%.
TheDSC, Sen, and Spe are improved by 0.75%, 0.93%, and 0.64%, respectively. This shows both theGCDand
GSD contribute to thefinal performance. Finally, we compareGCS-NetwithGCS-Net (w/oBON), As show
from the last two rows of table 2, the IoU,DSC, Sen, and Spe are improved by 0.91%, 0.55%, 0.37%, and 0.61%,
respectively. This shows that the BoundaryOptimizationNetwork and the edge loss are effective in optimizing
the boundary information of choroid by deep supervision.

Figure 5 shows the average featuremaps output by the decoder from low to high resolutions for twoB-scans
by the baseline network and theGCS-Net. It shows that with the proposedmodules, theGCS-Net can extract
featuresmore focused on the choroid region, especially for higher resolutions.Moreover, themodel adapts well
to both thick and thin choroids.

4.2. Comparisons to othermethods
Wecompared the proposedGCS-Net with some state-of-the-art segmentation algorithms: scSE-Unet
(Kugelman et al 2019), Res-Unet (Kugelman et al 2019), SegNet (Badrinarayanan andCipolla 2017, Tsuji et al
2020), Deeplab (Chen et al 2018), PSPNet (Zhao et al 2017), andCE-Net (Gu et al 2019). Among these, scSE-
Unet, Res-Unet, and SegNet were applied for choroid segmentation tasks (Kugelman et al 2019, Tsuji et al 2020),
andCE-Netwere applied for retinal layer segmentation tasks (Gu et al 2019), andwere reported to achieve good
performance. Especially, the scSE-Unet adopts spatial and channel squeeze-and-excitation blocks (Zhao et al
2017), as a formof self-attention. The performance comparisons are summarized in table 3, where the average
indices calculated on the normal eyes, highmyopia (HM) eyes, and the total dataset, are listed respectively. It can
be seen that ourmethod achieves the highest indices inmost cases, and reaches 92.59%, 95.97%, 96.66%, and
95.56% in average IoU,DSC, Sen, and Spe, respectively. Regarding the choroid segmentation indicators, the

Table 2.Results of ablation experiments for GCDandGSDmodules.

Methods IoU(%) DSC(%) Sen(%) Spe(%)

Baseline 90.38 ± 0.80 94.67 ± 0.59 95.36 ± 0.95 94.31 ± 1.27

Baseline+GCD(non-dilated) 91.36 ± 0.99 95.22 ± 0.67 95.83 ± 0.72 95.03 ± 0.61

Baseline+GCD(no-channel) 91.23 ± 1.05 95.13 ± 0.73 95.93 ± 0.78 94.86 ± 0.54

Baseline+GCD 91.43 ± 1.01 95.24 ± 0.71 95.89 ± 0.78 95.11 ± 0.41

Baseline+GSD(non-dilated) 91.33 ± 1.11 95.21 ± 0.76 95.95 ± 0.88 94.90 ± 0.73

Baseline+GSD(non-spatial) 91.26 ± 1.11 95.13 ± 0.78 95.99 ± 0.74 94.92 ± 0.56

Baseline+GSD 91.40 ± 1.08 95.25 ± 0.74 96.07 ± 0.63 94.83 ± 0.66

GCS-Net(w/oBON) 91.68 ± 1.01 95.42 ± 0.68 96.29 ± 0.67 94.95 ± 0.47

GCS-Net 92.59 ± 0.83 95.97 ± 0.54 96.66 ± 0.61 95.56 ± 0.36
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meanABD_BM,ABD_CSI, andTD are the lowest. At the same time, the proposedGCS-Net is lightweight with
much less parameters thanmethodswith competing performance. The total inference time for the test set is also
listed in table 3. The proposedGCS-Net costs slightly longer than theDeeplab and theCE-Net, while being faster
than scSE-Unet, SegNet and PSPNet. Figure 6 shows someB-scanswith the results overlaid. Comparedwith
othermethods, the proposedmethod delineates choroidal boundariesmore accurately both for normal retinas
and retinaswith highmyopia, even in low-contrast regions orwhen the choroid is extremely thin.Moreover, the
proposedmethod is not affected by pathological regionswith similar intensities to the choroid (the fourth row in
figure 6). Therefore, both quantitative and qualitative analysis of the results indicate that the ability of our
proposedGCS-Net to automatically selects group-wisemulti-scale information is very powerful and robust.

4.3.Quantitative analysis of choroid
With the proposedmethod, automatic quantification of the choroid thickness can be carried out.We calculated
the average choroid thickness of a group of 44 eyes with pathologicalmyopia (mean age 62.57± 3.99) and a
control group of 96 normal eyes (mean age 62.30± 3.43). The average cho-roidal thickness was 97.95 μmfor
PMeyes versus 172.27 μmfor normal eyes, showing significant choroid atrophy associatedwith PM. Figure 7
shows the choroid thicknessmaps of one normal eye and one eyewith PM, respectively. Substantial difference in
choroid thickness can be observed. From the thicknessmap, the thickness of different regions around the
macula or theONH, and their variations, can be further studied. This will support the research of related
pathologies, and also be helpful for pathology prediction and treatment planning in clinical practice.

5. Conclusions and discussions

In this paper, we design a novel lightweight group-wise context selection network for choroid segmentation in
B-scans from volumetric swept sourceOCTdata.Multiple dilated convolutions are used to obtainmulti-scale
featuremaps.Meanwhile, based on the self-attentionmechanism, adaptive weights are calculated and used for
automatic recalibration ofmulti-scale information. Thus, the featuremapswhose receptive fields bestfit the
scale of the segmentation target areawill bemost emphasized in decision. Twomodules, theGCD andGSD
blocks, are designed to achieve group-wisemulti-scale information selection in two different ways. By
integrating thesemodules into aU-shaped baseline network,multi-scale information is obtained in each layer of
the network,making the network powerful in segmenting both thick and thin choroid areas. A boundary

Figure 5.Comparison of featuremaps. (a) Featuremaps extracted by the baseline network for a highmyopia subject. (b) Featuremaps
extracted by theGCS-Net for a highmyopia subject. (c) Featuremaps extracted by the baseline network for a normal subject. (d)
Featuremaps extracted by theGCS-Net for a normal subject. First column: input B-scans, second to fifth column: average feature
maps output of the decoder from low to high resolutions.
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Table 3.Results comparedwith othermethods.

Metrics scSE-Unet Res-Unet SegNet Deeplab PSPNet CE-Net GCS-Net

IoU(%) Total 86.88 ± 1.54 88.21 ± 1.03 91.04 ± 0.79 88.15 ± 1.22 90.10 ± 0.92 91.26 ± 0.86 92.59 ± 0.83

Normal 90.63 ± 1.09 91.28 ± 0.69 93.51 ± 0.73 92.70 ± 0.93 92.76 ± 1.01 93.75 ± 0.81 94.47 ± 0.75

HM 78.26 ± 4.10 81.14 ± 3.67 85.36 ± 2.20 77.70 ± 3.44 83.99 ± 2.00 85.54 ± 1.92 88.29 ± 1.79

DSC(%) Total 92.33 ± 1.08 93.32 ± 0.72 95.00 ± 0.55 93.13 ± 0.90 94.49 ± 0.59 95.21 ± 0.56 95.97 ± 0.54

Normal 94.94 ± 0.64 95.29 ± 0.33 96.56 ± 0.44 96.12 ± 0.56 96.15 ± 0.58 96.71 ± 0.47 97.08 ± 0.43

HM 86.31 ± 3.15 88.79 ± 2.58 91.41 ± 1.60 86.24 ± 2.67 90.67 ± 1.42 91.76 ± 1.29 93.42 ± 1.16

Sen(%) Total 93.95 ± 1.20 94.46 ± 2.08 95.91 ± 0.73 94.18 ± 0.86 95.49 ± 1.35 95.58 ± 0.46 96.66 ± 0.61

Normal 97.08 ± 0.92 96.95 ± 1.71 96.97 ± 0.65 96.52 ± 0.65 96.80 ± 1.09 96.96 ± 0.58 97.26 ± 0.52

HM 86.76 ± 3.22 88.75 ± 3.89 93.46 ± 1.54 88.80 ± 2.29 92.47 ± 2.42 92.40 ± 1.33 95.27 ± 1.11

Spe(%) Total 91.84 ± 1.82 92.77 ± 2.10 94.71 ± 0.68 92.72 ± 1.05 93.98 ± 1.59 95.12 ± 0.65 95.56 ± 0.36

Normal 93.26 ± 1.11 94.13 ± 2.01 96.24 ± 0.72 95.80 ± 0.68 95.63 ± 1.62 96.57 ± 0.53 97.02 ± 0.36

HM 88.58 ± 4.30 89.65 ± 2.90 91.20 ± 1.34 85.64 ± 2.92 90.20 ± 1.85 91.78 ± 1.41 92.20 ± 1.30

ABD_BM( μm) Total 4.09 ± 0.74 3.30 ± 0.63 2.69 ± 0.08 4.23 ± 0.28 3.47 ± 0.32 2.83 ± 0.14 2.48 ± 0.20

Normal 3.27 ± 0.61 2.78 ± 0.50 2.27 ± 0.09 3.01 ± 0.14 2.87 ± 0.36 2.22 ± 0.13 2.18 ± 0.14

HM 5.97 ± 1.66 4.50 ± 1.00 3.67 ± 0.26 7.04 ± 0.76 4.85 ± 0.49 4.22 ± 0.46 3.16 ± 0.39

ABD_CSI( μm) Total 13.59 ± 1.86 12.77 ± 1.27 8.36 ± 1.06 9.39 ± 1.34 9.00 ± 1.19 8.15 ± 1.18 6.95 ± 1.18

Normal 13.08 ± 2.12 12.57 ± 1.08 9.02 ± 1.51 9.44 ± 1.78 9.70 ± 1.62 8.68 ± 1.56 7.50 ± 1.58

HM 14.76 ± 2.48 13.23 ± 3.06 6.83 ± 0.25 9.28 ± 0.79 7.38 ± 0.40 6.94 ± 0.42 5.70 ± 0.40

TD( μm) Total 13.89 ± 1.84 12.89 ± 1.12 9.01 ± 1.13 10.90 ± 1.44 10.12 ± 1.37 8.96 ± 1.19 7.84 ± 1.18

Normal 13.98 ± 2.25 13.34 ± 0.81 9.70 ± 1.58 10.35 ± 1.83 10.75 ± 1.83 9.35 ± 1.62 8.30 ± 1.58

HM 13.67 ± 1.10 11.84 ± 2.62 7.42 ± 0.36 12.17 ± 1.15 8.66 ± 0.66 8.06 ± 0.61 6.78 ± 0.60

#params 5.0M 7.4M 29M 42M 45M 50M 8.4M

Inference time(1650 B-scans)(s) 248 165 294 151 265 140 162
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optimization network and a new edge loss are proposed to further tackle the difficulty of detectingweak choroid
boundaries by deep supervision.

By comparingmodel variations, the experimental results show that both themulti-scale dilated convolution
and the attentionmechanism, bothGCD andGSDblocks, and the boundary optimization networkwith edge
loss contribute to the improvement of segmentation performance. The experimental results also show that the
proposedmethod can accurately segment choroid of either normal or highmyopia retinas and outperforms
other state-of-the-art deep networks for segmentation.

Graph search basedmethods are another category of state-of-the-art choroid segmentationmethods
(Danesh et al 2014, Chen et al 2015, 2016, Shi et al 2016, Sui et al 2017), but theywill generally fail when directly
applied to our test images, where the existence ofONHcompromises layer continuity and smoothness, and the
folding of the retina and the pathological regions disrupt the spacial constraints. Nevertheless, the proposed

Figure 6.Example B-scanswith choroid segmentation results overlaid. The green and red outline represents the ground truth and the
prediction, respectively. Thefirst and second rows are B-scans fromnormal subjects, while the third and fourth rows are B-scans from
highmyopia subjects. (a)Original images. (b)Ground truth. (c) scSE-UNet (Kugelman et al 2019). (d)Res-UNet (Kugelman
et al 2019). (e) SegNet (Badrinarayanan andCipolla 2017). (f)Deeplab (Chen et al 2018). (g)PSPNet (Hu et al 2020). (h)CE-Net (Gu
et al 2019). (i)The proposedGCS-Net.

Figure 7.Example choroid thicknessmaps (a)normal eye (b)PM.
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method can deal with these cases well. It automatically avoids theONH region and the invalid region caused by
image folding, and is not affected by the pathological regions. Themethod is efficient and effective with no pre-
processing needed. It canmeet the needs of quantitative analysis of choroid regions in both pathology study and
clinical diagnosis and treatment.

In the proposed network, the network parameters such as the number of groups, the size of dilated
convolutions, and the depth of the networkwere empirically selected, and suited the specific segmentation task.
Formore complicated segmentation tasks,more dilated convolutions with different sizes, and a deeper network
structuremay be adopted. In the future, wewill optimize the network to further improve the choroid
segmentation performance on pathological data.Wewill further investigate on howGCS-Net or its variations
work for other segmentation tasks.Wewill also explore the usage ofGCDandGSDblocks in othermedical
image analysis tasks, such as classification.
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