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Abstract

Choroid thickness measured from optical coherence tomography (OCT) images has emerged as a vital
metric in the management of retinal diseases such as high myopia. In this paper, we propose a novel
group-wise context selection network (referred to as GCS-Net) to segment the choroid of either
normal or high myopia eyes. To deal with the diverse choroid thickness and the variable shape of the
pathological retina, GCS-Net adopts the group-wise channel dilation (GCD) module and the group-
wise spatial dilation module, which can automatically select group-wise multi-scale information
under the guidance of channel attention or spatial attention, and enhance the consistency between the
receptive field and the target area. Furthermore, a boundary optimization network with a new edge
loss is incorporated to improve the resulting choroid boundary by deep supervision. Experimental
results evaluated on a dataset composed of 1650 clinically obtained OCT B-scans show that the
proposed GCS-Net can achieve a Dice similarity coefficient 0of 95.97 = 0.54%, which outperforms
some state-of-the-art segmentation networks.

1. Introduction

The choroid layer, sandwiching between the retinal pigment epithelium (RPE) and the sclera, has complex
vasculature and performs critical physiological functions (Bill et al 1983, Norren and Tiemeijer 1986,
Parver 1991, Alm and Nilsson 2009, Nickla and Wallman 2010). Changes of the choroid thickness and volume
are the manifestation of various eye diseases, such as pathological myopia (PM), age-related macular
degeneration (AMD), central serous choroiretinopathy (CSC), Vogt-Koyanagi-Harada syndrome, and
choroiditis Imamura et al 2009, Manjunath et al 2011, Esmaeelpour etal 2011, Sim et al 2013, Dhoot et al 2013).
In recent decades, the emergence and development of optical coherence tomography (OCT) imaging has largely
facilitated the diagnosis of retinal /choroidal diseases (Huang et al 1991, Fujimoto and Swanson 2016). With the
advance of OCT techniques, the deeper structures of the eye become visible, and the whole choroid region can be
visualized (Yasuno et al 2007). Accurate quantification of the choroid thickness from OCT scans is of great
significance for the pathophysiology studies of diseases associated with choroid, and can help the prediction,
diagnosis, and management of these diseases. In this paper, we propose an automatic method to segment the
choroid region for either normal or high myopia retina, from wide-view OCT scans including both macula and
optic nerve head (ONH) area, as shown in figure 1.

Many existing algorithms (Li et al 2012, Alonso-Caneiro et al 2013, Danesh et al 2014, Chen et al 2015, 2016,
Shi et al 2016) divide choroid segmentation into two tasks, first detecting the Bruchs membrane (BM) as its
upper boundary and then detecting the choroidal-scleral interface (CSI) as the lower boundary. The BM with
high contrast can be segmented using gradient-based methods, while the CSI is more subtle and therefore more
regional or textural constraints need to be added. These traditional algorithms have certain limitations. Some are
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Figure 1. B-scans from wide-view volumetric OCT scans. (a) A B-scan of a normal eye. (b) The same B-scan in (a) with several
structure manually labeled. (c) A B-scan from an eye with high myopia. (d) The same B-scan in (c) with several structure manually
labeled.

only applicable to high-SNR B-scans obtained by compounding, and some are only applicable to normal retinas,
or to macular centered OCT scans. For high myopia (HM) retina, low signal intensity, folding of the retina
caused by the long axial length, and abnormal regions such as retinoschisis and choroidal neovascularization
make detection of the retinal and choroidal structure more complicated and difficult. Moreover, for OCT scans
containing the optical nerve head (ONH), gradient-based methods will give inaccurate results if no proper pre-
processing is applied (Yu et al 2018). In this paper, we seek to use the deep learning method to directly segment
the choroid region, avoiding any pre-processing steps.

Convolutional neural networks (CNNis) have been widely applied for medical image segmentation, with
some applications on retinal OCT segmentation. In Fang et al (2017), a framework was proposed combining
CNN and graph search method for automatic segmentation of nine retinal layer boundaries from OCT images.
The U-Net (Ronneberger et al 2015) added skip-connection on the basis of fully convolutional network to
integrate saliency prediction at multiple resolutions, and achieves high performance in medical image
segmentation. ReLayNet (Roy et al 2017) used such encoder-decoder configuration and incorporate unpooling
stages with skip connections for improved spatial consistency, and used a composite loss function to achieve
end-to-end segmentation of retinal layers and fluid masses in eye OCT scans. CE-net (Gu et al 2019) improved
U-Net using dense atrous convolution (DAC) block and residual multi-kernel pooling (RMP) block to capture
more high-level features and preserve more spatial information, and achieved good results on several tasks
including retinal layer segmentation. For choroid segmentation, in Sui et al (2017), a multi-scale CNN was
proposed to learn the graph-edge weights needed for graph search methods. In Masood et al (2019), BM was
segmented using a series of morphological operations, whereas the choroid layer was segmented using CNN. In
Kugelman et al (2019), several patch-based or semantic segmentation CNN methods were tested and compared,
and it was concluded that the semantic segmentation CNNs performed significantly better in detecting the CSI.
In Tsuji et al (2020), the SegNet (Badrinarayanan and Cipolla 2017) was applied for choroid segmentation.

Despite that U-shaped networks have achieved high performance on different benchmarks, a significant
disadvantage of such networks is that it perform a unified processing of all channels of feature maps within the
same layer, which will result in the same receptive field and single-scale information in one layer. With the
consecutive pooling and strided convolutional operations, this drawback becomes more prominent. Since each
layer of the network only acquires single-scale local information, spatial information is gradually weakened as
the feature map is downsampled layer by layer in the encoder side, and the global context information
finally obtained by the encoder is gradually weakened as the feature map is upsampled layer by layer in the
decoder side.

Aiming at such shortcomings, many networks were proposed to optimize feature extraction. For example,
SegNet (Badrinarayanan and Cipolla 2017) utilized the saved pool indices to recover the reduced spatial
information. The global convolutional network (Chao et al 2017) adopted large kernel size to expand the
receptive fleld. Pyramid pooling module was proposed in PSPNet (Parver 1991) to fuse multi-scale features to
tackle objects of different size. Recently, the attention module becomes an increasingly powerful tool for deep
learning, which allows feature recalibration (Wang et al 2018, Fu et al 2019, Hu et al 2020). However, these
networks achieve better performance at the expense of computational time and memory cost. The dilated/
atrous convolution (Yuand Koltun 2016, Chen et al 2017, 2018) is another way to expand the receptive field
without increasing the amount of parameters.

In this paper, motivated by the idea of the group convolution (Krizhevsky et al 2012, Chollet 2017, Gao et al
2021), we design a lightweight group-wise context selection network (GCS-Net) for choroid segmentation in
OCT images. The core idea of GCS-Net is to group a number of feature maps, and to automatically select group-
wise multi-scale information under the guidance of channel attention or spatial attention. This will enhance the
consistency between the receptive field and the target area, thereby enhancing the learning of useful information.
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Figure 2. Components of the group-wise channel dilation (GCD) module.

The contributions of the paper are listed as follows:

+ We propose a novel framework named GCS-Net, which can autonomously select group-wise context
information that corresponds to different sizes of receptive field, so that targets with different scales can be
segmented accurately. At the same time, GCS-Net is extremely lightweight with much less parameters than
the state-of-the-art deep networks for segmentation.

+ We design a group-wise channel dilation (GCD) module to be inserted in the skip-connection of the GCS-
Net. The purpose of this module is to autonomously select the group-wise multi-scale information under the
guidance of channel information.

+ We design a group-wise spatial dilation (GSD) module to be placed in the decoding path of the GCS-Net. The
purpose of this module is to autonomously select the group-wise multi-scale information under the guidance
of spatial information.

+ Wedesign a new edge loss as part of the joint loss, which deals with the difficulty caused by blurred choroid
boundary by the means of deep supervision.

The rest of the paper is organized as follows: section 2 details the structure of GCS-Net and the joint loss used
by the network. In section 3, the dataset, implementation details and evaluation metrics are described and
explained. Subsequently, results of ablation experiments and comparison experiments are given and discussed
in section 4. Section 5 concludes the entire work and gives some discussions.

2.Methods

In this section, the self-attention mechanism is first introduced which motivates the two proposed modules for
automatic selection of group-wise multi-scale information. Then the GCD module and GSD module are
introduced in detail. Subsequently, the overall network structure is given with explanations on how the two
modules work for our segmentation task. Finally, the joint loss is described.

2.1. Self-attention mechanism

Recently, self-attention modules are proposed to enhance the discriminating ability of feature representations
by allowing feature recalibration with adaptive weights calculated from the feature maps. These modules can
be categorized into channel attention and spatial attention modules. Used separately (Zhao et al 2017, Hu

et al 2020) or combined (Woo et al 2018, Cao et al 2019), they achieved good results in computer vision
tasks. The channel attention module spatially compresses a set of feature maps by global average pooling to
obtain channel-wise importance, and thereby assigning different weights to each channel. The spatial
attention module performs a series of compression operations on a group of feature maps along the channel
axis to obtain a spatial feature description map, which is used to guide the optimization of the feature map.
In this paper, we integrate multi-scale dilated convolution into these two types of modules, to further allow
feature recalibration over different scales.

2.2. Group-wise channel dilation module

Figure 2 shows the proposed group-wise channel dilation module. The input feature maps go through global
average pooling, convolution, activation to return m groups of feature maps.Then group-wise softmax
regression is performed to return m groups of channel weights. Meanwhile, the input feature maps are evenly
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Figure 3. Components of the group-wise spatial dilation (GSD) module.

divided into m groups and dilated convolution with dilation ratios of df’,- --,d,;, are applied to each group,
respectively. Consequently, m groups of feature maps with different receptive field are obtained. Then the m
groups of feature maps are multiplied with the corresponding channel weights to emphasize automatic selection
of features of different scales. Finally, concatenation and residual operations are used to tackle performance
degradation associated with deepening of the network. Therefore, the module automatically selects multi-scale
information obtained from a group of feature maps under the guidance of the channel information.

2.3. Group-wise spatial dilation module

Figure 3 shows the proposed group-wise spatial attention module. The input feature maps go through a series of
operations to obtain # feature maps with spatial weights. Among these operations, the downsampling serves to
get more global information, and the upsampling restores the size of the feature map. Meanwhile, the input
feature maps are divided into n groups. Note that in this module it is not necessary to have exactly the same
number of channels in each group. Dilated convolution with dilation ratios of d;’,---,d,, are applied to each
group, respectively. Consequently, n groups of feature maps with different scales are obtained. Then these
feature maps are multiplied with the corresponding spatial weights. Finally, concatenation and residual
operations are used to obtain the output feature maps. Therefore, the module automatically selects multi-scale
information obtained from a group of feature maps under the guidance of spatial information.

2.4.Loss function

One major difficulty of choroid segmentation is that the lower boundary (CSI), defined between the choroid
vasculature and the sclera, is often blurred. Meanwhile, the high level of noise and low contrast of pathological
OCT scans can cause deflected results for both upper and lower boundaries. Therefore, a new edge loss Lgpice,
which is the Dice loss calculated by edge probabilities, is used to make the network more sensitive to choroid
boundary information, defined asin (1)

25" Np,'Sobel(g)) + €
YN’ + S NSobel(g) + ¢

where N is the total size of the prediction map, p,” € [0, 1] denotes the predicted probability for choroid
boundaries, g; € {0, 1} denote the ground truth label for choroid region, and the Sobel edge detection operator is
used to extract the edge ground truth, and € is a small smoothing factor.

In this paper, the proposed edge loss as well as the binary cross-entropy (BCE) and Dice loss commonly used
in the segmentation tasks, comprise the total loss to jointly optimize the network. Among them, BCE can solve
the problem of data imbalance in medical images, while Dice loss is more focused on small target segmentation

(1

Lepice = 1

N
Lice = = [ 10g(p) + (1 = g)log(1 — p)] @

ZZ;NP,‘& + €
Sip gt e

where p; € [0, 1] denotes the predicted probability for the choroid region, and g; € {0, 1} denote the ground
truth label for choroid region.

Lpice =1 —

3

2.5.Network architecture

With GCD and GSD, we propose our group-wise context selection network for choroid segmentation as
illustrated in figure 4. Since GCD and GSD are powerful in acquiring multi-scale contexts, we use a lightweight
U-Net with only four layers of encoder-decoder architecture as our baseline. Two 3 x 3 convolutions and max
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Figure 4. An overview of the group-wise context selection network (GCS-Net)

pooling are used in each layer of the encoding path to quickly acquire feature maps of different resolutions.
Multiple simple decoder blocks are used in decoder path to restore the high resolution feature maps efficiently.
Except for the last two convolutional layers for final prediction output, convolutional layers in the network are
followed by batch normlization (BN) and rectified linear unit (ReLU), which are not shown in figure 4 for
compact illustration. The GCD modules are applied in the skip-connection. The purpose is to obtain useful
multi-scale information and transfer it to the decoder side. The GSD modules are applied in the decoder side,
inserted between the deconvolution layers. The purpose is both to acquire multi-scale information and to
compensate for the loss of global information caused by upsampling in the decoding process.

The boundary optimization network (BON) is a subnet which emphasizes boundary information in the final
prediction map, and achieves deep supervision by the proposed edge loss. In BON, four edge prediction maps
are generated, for which the edge loss is calculated respectively. Note that after the last three GSD modules,
deconvolutions are added to unify the size of the feature map. The obtained semantic boundary information of
different scales is added and merged into the last convolution of the network, so that the edges in the predicted
map can be refined.

Then the final joint loss function is defined as:

4

Ltotar = Lpce + aLpice + BZ LéDice’ “)
i=1

where avand [ are predefined weights.

3. Experimental settings

3.1. Dataset

The dataset used in this paper contained B-scans from volumetric OCT scans acquired by a Topcon Atlantis
DRI-1 swept source OCT scanner (Topcon Corp., Tokyo, Japan) at the First People’s Hospital Affiliated to
Shanghai Jiao Tong University, China. The scan range included the macular center and the ONH region.

The volumetric image size was 512 x 992 x 256 (width x height x B-scans), which corresponded to a

12 x 2.6 x 9mm” volume. The collection and analysis of image data were approved by the Institutional Review
Board of the First People’s Hospital Affiliated to Shanghai Jiao Tong University and adhered to the tenets of the
Declaration of Helsinki. An informed consent was obtained from each subject. The dataset included a total of
1650 OCT B-scans with ground truth. Among them, 1150 B-scans came from 115 normal eyes, 500 B-scans
came from 50 eyes with high myopia, where ten evenly spaced B-scans were extracted from each OCT volume.

5
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Table 1. Results of ablation experiments for model complexity.

Methods IoU(%) DSC(%) Sen(%) Spe(%) #fparams
Baseline_4layer 90.38 £ 0.80 94.67 £0.59 95.36 £0.95 94.31 £1.27 4.88M
Baseline_5layer 90.56 &= 0.38 94.78 £ 0.22 96.23 £ 1.32 93.68 £ 1.23 9.87M
GCS-Net_4layer(w/o BON) 91.68 + 1.01 95.42 + 0.68 96.29 + 0.67 94.95 £ 0.47 7.50M
GCS-Net_5layer(w/o BON) 91.58 £0.88 95.35 £0.57 96.18 £ 0.67 94.97 + 0.67 17.65M

The upper and lower boundaries of choroid were delineated by a clinical professional using the software
ITK-SNAP (version 3.4.0) (Yushkevich et al 2006). Adjacent B-scans might be used for reference to assist
delineation of subtle boundaries. The B-scans were evenly divided into five folds, and it was made sure all
B-scans from one subject only occur in one of the five folds, so that training and testing data were from
different subjects. Five-fold cross validation was performed to get all the reported results.

3.2.Implementation details
The experiments were performed on the public platform PyTorch with NVIDIA Tesla K40 GPU with 12 GB
memory. In the training process, the batch size was 8, and the iteration number was 60. The stochastic gradient
descent algorithm with an initial learning rate 0f 0.01, the momentum of 0.9 and weight decay rate of 0.0001 was
used to optimize the network.

In the training process, we used random left-right flips for data augmentation, considering the symmetry of
left and right eyes. To improve computational efficiency, we resized the input image size from 992 x 512 to
512 x 256, which almost kept the aspect ratio of the original B-scan.

3.3. Evaluation metrics

To quantitatively evaluate the performance of the proposed model, four segmentation evaluation metrics: inter-
section-over-union (IoU), Dice similarity coefficient (DSC), sensitivity (Sen) and specificity (Spe), are used in
ablation study. In comparison with other methods, we add three additional indicators for the evaluation of
choroid segmentation: the mean absolute boundary difference (ABD) of BM and CSI, and the mean thickness
difference (TD) of the choroid (Shi et al 2016).

3.4. Parameter selection
We empirically selected the number of groups and the dilation ratios in the GCD and GSD modules. Various
combinations of group numbers m = 1, 2,4 and n = 1 ~ 4 were tested. (Note that m = 3 is not applicable to
ensure the same group size in the GCD module.) For dilation ratios, d” = 1and d = 1 were fixed, representing
non-dilated convolution for the first group, and various combinations of dilation ratios of 2, 4, 6 were tested for
the other groups. The combination of m =2 with df = 1, d5 = 2,andn=3withd’ =1, d; = 2,d; = 4
resulted in the highest IoU index, and were used to obtain all reported results in the next section.

We also empirically selected the weights in the loss function as &« = 1 and 3 = 1. Larger 3 makes it more
difficult for the model to converge, because small perturbation in the edge location can result in large variation of
the edge loss.

4, Results

4.1. Ablation study
In this subsection, we present several plausible variations of the proposed GCS-Net, in order to highlight the
importance of each of the proposed contributions.

4.1.1. Ablation study for model complexity

In order to verify that the performance improvement of the proposed model is not caused by the increase in
network parameters, we deepened the baseline and GCS-Net (w/0 BON) from four layers to five layers. The
results and amounts of model parameters are listed in table 1. It can be seen that the proposed model has less
parameters but better performance than the 5-layer baseline. Interestingly, for GCS-Net (w/0 BON), theres no
improvement of performance when the number of layers increases. There are probably two reasons for this.
First, as the network is applied for segmentation of a single type of region, the number of parameters with four
layers are already enough to capture the features of choroid regions. Too many parameters may cause some
useful information to be overwhelmed during the encoding process, which will cause the network to fail to
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Table 2. Results of ablation experiments for GCD and GSD modules.

Methods 10U(%) DSC(%) Sen(%) Spe(%)

Baseline 90.38 + 0.80 94.67 + 0.59 95.36 + 0.95 94.31 + 1.27
Baseline+GCD(non-dilated) 91.36 % 0.99 95.22 4 0.67 95.83 % 0.72 95.03 %+ 0.61
Baseline-+GCD(no-channel) 91.23 + 1.05 95.13 + 0.73 95.93 4+ 0.78 94.86 + 0.54
Baseline+GCD 91.43 + 1.01 95.24 + 0.71 95.89 + 0.78 95.11 + 0.41
Baseline+GSD(non-dilated) 91.33 + 1.11 95.21 + 0.76 95.95 4 0.88 94.90 + 0.73
Baseline-+GSD(non-spatial) 91.26 + 1.11 95.13 £ 0.78 95.99 + 0.74 94.92 + 0.56
Baseline+GSD 91.40 + 1.08 95.25 + 0.74 96.07 + 0.63 94.83 + 0.66
GCS-Net(w/0 BON) 91.68 + 1.01 95.42 & 0.68 96.29 + 0.67 94.95 + 0.47
GCS-Net 92.59 -+ 0.83 9597 £ 054  96.66 = 0.61 95.56 =+ 0.36

recover more semantic information during the decoding process. Moreover, increasing the depth of the network
is nothing more than increasing the ability of acquiring multi-scale features. However, with multiple dilated
convolutions, the proposed GCS-Net (w/0 BON) is already powerful in multi-scale representations, making
deeper structure unnecessary. Therefore, we adopt the four-layer GCS-Net (w/0 BON), which is lightweight.

4.1.2. Ablation study for GCD module

We first studied a model variation with only the GCD modules integrated in the baseline, called Baseline+GCD.
We also designed another two model variations for comparison, called Baseline+GCD (non-dilated) and
Baseline+GCD (no-channel). In Baseline4+GCD (non-dilated), all dilation ratios of the dilated convolution
were set as 1, so that the module did not extract multi-scale information. In Baseline-+GCD (no-channel), the
channel attention mechanism was removed. As shown in table 2, all these variations have higher indices over the
baseline, and GCD with both dilated convolution and channel attention achieves highest IoU, DSC and Spe.
This shows both of these two components contribute to the final performance.

4.1.3. Ablation study for GSD module

Similarly, we designed three model variations called Baseline+GSD, Baseline+GSD (non-dilated) and Baseline
+GSD (non-spatial). As shown in table 2, all these variations have higher IoU, DSC, Sen and Spe over the
baseline, and GSD with both dilated convolution and channel attention achieves highest IoU, DSC, and Sen.
This shows multi-scale dilated convolution and spatial attention contribute to the final performance.

4.1.4. Ablation study for the whole network

Firstly we compare Baseline+GCD, Baseline+GSD, and GCS-Net (w/0 BON) with both modules integrated. As
shown in table 2, compared with the baseline, the GCD module improves the IoU by 1.05% and the GSD
module improves the IoU by 1.02%. Adding both GCD and GSD to the baseline improves the IoU by 1.30%.
The DSC, Sen, and Spe are improved by 0.75%, 0.93%, and 0.64%, respectively. This shows both the GCD and
GSD contribute to the final performance. Finally, we compare GCS-Net with GCS-Net (w/0 BON), As show
from the last two rows of table 2, the IoU, DSC, Sen, and Spe are improved by 0.91%, 0.55%, 0.37%, and 0.61%,
respectively. This shows that the Boundary Optimization Network and the edge loss are effective in optimizing
the boundary information of choroid by deep supervision.

Figure 5 shows the average feature maps output by the decoder from low to high resolutions for two B-scans
by the baseline network and the GCS-Net. It shows that with the proposed modules, the GCS-Net can extract
features more focused on the choroid region, especially for higher resolutions. Moreover, the model adapts well
to both thick and thin choroids.

4.2. Comparisons to other methods

We compared the proposed GCS-Net with some state-of-the-art segmentation algorithms: scSE-Unet
(Kugelman et al 2019), Res-Unet (Kugelman et al 2019), SegNet (Badrinarayanan and Cipolla 2017, Tsuji et al
2020), Deeplab (Chen et al 2018), PSPNet (Zhao et al 2017), and CE-Net (Gu et al 2019). Among these, scSE-
Unet, Res-Unet, and SegNet were applied for choroid segmentation tasks (Kugelman et al 2019, Tsuji et al 2020),
and CE-Net were applied for retinal layer segmentation tasks (Gu et al 2019), and were reported to achieve good
performance. Especially, the scSE-Unet adopts spatial and channel squeeze-and-excitation blocks (Zhao et al
2017), as a form of self-attention. The performance comparisons are summarized in table 3, where the average
indices calculated on the normal eyes, high myopia (HM) eyes, and the total dataset, are listed respectively. It can
be seen that our method achieves the highest indices in most cases, and reaches 92.59%, 95.97%, 96.66%, and
95.56% in average IoU, DSC, Sen, and Spe, respectively. Regarding the choroid segmentation indicators, the
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Figure 5. Comparison of feature maps. (a) Feature maps extracted by the baseline network for a high myopia subject. (b) Feature maps
extracted by the GCS-Net for a high myopia subject. (c) Feature maps extracted by the baseline network for a normal subject. (d)
Feature maps extracted by the GCS-Net for a normal subject. First column: input B-scans, second to fifth column: average feature
maps output of the decoder from low to high resolutions.

mean ABD _BM, ABD_CSI, and TD are the lowest. At the same time, the proposed GCS-Net is lightweight with
much less parameters than methods with competing performance. The total inference time for the test set is also
listed in table 3. The proposed GCS-Net costs slightly longer than the Deeplab and the CE-Net, while being faster
than scSE-Unet, SegNet and PSPNet. Figure 6 shows some B-scans with the results overlaid. Compared with
other methods, the proposed method delineates choroidal boundaries more accurately both for normal retinas
and retinas with high myopia, even in low-contrast regions or when the choroid is extremely thin. Moreover, the
proposed method is not affected by pathological regions with similar intensities to the choroid (the fourth row in
figure 6). Therefore, both quantitative and qualitative analysis of the results indicate that the ability of our
proposed GCS-Net to automatically selects group-wise multi-scale information is very powerful and robust.

4.3. Quantitative analysis of choroid

With the proposed method, automatic quantification of the choroid thickness can be carried out. We calculated
the average choroid thickness of a group of 44 eyes with pathological myopia (mean age 62.57 + 3.99) and a
control group of 96 normal eyes (mean age 62.30 &+ 3.43). The average cho-roidal thickness was 97.95 ym for
PM eyes versus 172.27 um for normal eyes, showing significant choroid atrophy associated with PM. Figure 7
shows the choroid thickness maps of one normal eye and one eye with PM, respectively. Substantial difference in
choroid thickness can be observed. From the thickness map, the thickness of different regions around the
macula or the ONH, and their variations, can be further studied. This will support the research of related
pathologies, and also be helpful for pathology prediction and treatment planning in clinical practice.

5. Conclusions and discussions

In this paper, we design a novel lightweight group-wise context selection network for choroid segmentation in
B-scans from volumetric swept source OCT data. Multiple dilated convolutions are used to obtain multi-scale
feature maps. Meanwhile, based on the self-attention mechanism, adaptive weights are calculated and used for
automatic recalibration of multi-scale information. Thus, the feature maps whose receptive fields best fit the
scale of the segmentation target area will be most emphasized in decision. Two modules, the GCD and GSD
blocks, are designed to achieve group-wise multi-scale information selection in two different ways. By
integrating these modules into a U-shaped baseline network, multi-scale information is obtained in each layer of
the network, making the network powerful in segmenting both thick and thin choroid areas. A boundary
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Table 3. Results compared with other methods.

Metrics scSE-Unet Res-Unet SegNet Deeplab PSPNet CE-Net GCS-Net

IoU(%) Total 86.88 + 1.54 88.21 + 1.03 91.04 +0.79 88.15 + 1.22 90.10 + 0.92 91.26 + 0.86 92.59 + 0.83
Normal 90.63 + 1.09 91.28 £+ 0.69 93.51 +£0.73 92.70 £ 0.93 92.76 + 1.01 93.75 + 0.81 94.47 £ 0.75

HM 78.26 + 4.10 81.14 + 3.67 85.36 £ 2.20 77.70 + 3.44 83.99 + 2.00 85.54 +1.92 88.29 £ 1.79

DSC(%) Total 92.33 + 1.08 93.32 £ 0.72 95.00 £+ 0.55 93.13 £ 0.90 94.49 + 0.59 95.21 £ 0.56 95.97 £ 0.54
Normal 94.94 £ 0.64 95.29 £ 0.33 96.56 + 0.44 96.12 + 0.56 96.15 £ 0.58 96.71 £ 0.47 97.08 + 0.43

HM 86.31 £+ 3.15 88.79 + 2.58 91.41 + 1.60 86.24 + 2.67 90.67 + 1.42 91.76 + 1.29 93.42 £+ 1.16

Sen(%) Total 93.95 + 1.20 94.46 + 2.08 95.91 +0.73 94.18 £+ 0.86 95.49 + 1.35 95.58 + 0.46 96.66 + 0.61
Normal 97.08 + 0.92 96.95 + 1.71 96.97 £+ 0.65 96.52 £ 0.65 96.80 + 1.09 96.96 + 0.58 97.26 £ 0.52

HM 86.76 + 3.22 88.75 £ 3.89 93.46 + 1.54 88.80 £ 2.29 92.47 £+ 2.42 92.40 £ 1.33 95.27 £ 1.11

Spe(%) Total 91.84 + 1.82 92.77 £ 2.10 94.71 £+ 0.68 92.72 £ 1.05 93.98 + 1.59 95.12 + 0.65 95.56 + 0.36
Normal 93.26 £ 1.11 94.13 £ 2.01 96.24 £+ 0.72 95.80 + 0.68 95.63 £ 1.62 96.57 £ 0.53 97.02 £ 0.36

HM 88.58 £ 4.30 89.65 + 2.90 91.20 + 1.34 85.64 +2.92 90.20 + 1.85 91.78 + 1.41 92.20 £ 1.30

ABD_BM( pm) Total 4.09 +0.74 3.30 + 0.63 2.69 £+ 0.08 4.23 +0.28 3.47 +£0.32 2.83 +0.14 2.48 £+ 0.20
Normal 3.27 £0.61 2.78 £ 0.50 2.27 £ 0.09 3.01 £0.14 2.87 £0.36 2.22+£0.13 2.18 £ 0.14

HM 5.97 + 1.66 4.50 £ 1.00 3.67 £0.26 7.04 £ 0.76 4.85 + 0.49 4.22 +0.46 3.16 £ 0.39

ABD_CSI( p¢m) Total 13.59 + 1.86 12.77 + 1.27 8.36 &+ 1.06 9.39 +1.34 9.00 + 1.19 8.15+1.18 6.95 + 1.18
Normal 13.08 £2.12 12.57 £ 1.08 9.02 £ 1.51 9.44 +1.78 9.70 £ 1.62 8.68 + 1.56 7.50 £ 1.58

HM 14.76 + 2.48 13.23 4 3.06 6.83 +0.25 9.28 +0.79 7.38 £+ 0.40 6.94 + 0.42 5.70 £ 0.40

TD( pm) Total 13.89 £+ 1.84 12.89 £ 1.12 9.01 +£1.13 10.90 £ 1.44 10.12 £ 1.37 8.96 + 1.19 7.84 £ 1.18
Normal 13.98 + 2.25 13.34 4+ 0.81 9.70 £+ 1.58 10.35 + 1.83 10.75 + 1.83 9.35 + 1.62 8.30 + 1.58

HM 13.67 £ 1.10 11.84 + 2.62 7.42 £+ 0.36 12.17 £ 1.15 8.66 £ 0.66 8.06 = 0.61 6.78 £ 0.60

#params 5.0M 7.4M 29M 42M 45M 50M 8.4M
Inference time(1650 B-scans)(s) 248 165 294 151 265 140 162
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Figure 6. Example B-scans with choroid segmentation results overlaid. The green and red outline represents the ground truth and the
prediction, respectively. The first and second rows are B-scans from normal subjects, while the third and fourth rows are B-scans from
high myopia subjects. (a) Original images. (b) Ground truth. (¢) scSE-UNet (Kugelman er al 2019). (d) Res-UNet (Kugelman
etal2019). (e) SegNet (Badrinarayanan and Cipolla 2017). (f) Deeplab (Chen et al 2018). (g) PSPNet (Hu et al 2020). (h) CE-Net (Gu
etal2019). (i) The proposed GCS-Net.
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Figure 7. Example choroid thickness maps (a) normal eye (b) PM.

optimization network and a new edge loss are proposed to further tackle the difficulty of detecting weak choroid
boundaries by deep supervision.

By comparing model variations, the experimental results show that both the multi-scale dilated convolution
and the attention mechanism, both GCD and GSD blocks, and the boundary optimization network with edge
loss contribute to the improvement of segmentation performance. The experimental results also show that the
proposed method can accurately segment choroid of either normal or high myopia retinas and outperforms
other state-of-the-art deep networks for segmentation.

Graph search based methods are another category of state-of-the-art choroid segmentation methods
(Danesh etal 2014, Chen etal 2015, 2016, Shi et al 2016, Sui et al 2017), but they will generally fail when directly
applied to our test images, where the existence of ONH compromises layer continuity and smoothness, and the
folding of the retina and the pathological regions disrupt the spacial constraints. Nevertheless, the proposed
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method can deal with these cases well. It automatically avoids the ONH region and the invalid region caused by
image folding, and is not affected by the pathological regions. The method is efficient and effective with no pre-
processing needed. It can meet the needs of quantitative analysis of choroid regions in both pathology study and
clinical diagnosis and treatment.

In the proposed network, the network parameters such as the number of groups, the size of dilated
convolutions, and the depth of the network were empirically selected, and suited the specific segmentation task.
For more complicated segmentation tasks, more dilated convolutions with different sizes, and a deeper network
structure may be adopted. In the future, we will optimize the network to further improve the choroid
segmentation performance on pathological data. We will further investigate on how GCS-Net or its variations
work for other segmentation tasks. We will also explore the usage of GCD and GSD blocks in other medical
image analysis tasks, such as classification.
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